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loose-packed mixtures). The ideal or hydrodynamic velocities were measured in 20-25 cm 
diameter charges using - 48 mesh and ball-milled SN. RDX + water mixtures were 
also studied to determine the influence of added water on the a(v) curve. D(Pt) data for 
these mixtures were obtained for 100/0, 95/5, 90/10, 85/15 and 80/20 mixtures, but a(v) 
calculations were made only for the 100-0 and 90-10 mixtures. Pressed and hand-packed 
charges were used depending on the density desired. For the 90/10 mixture five shots 
were measured at each of the end points of the D(Pt) curve (Pt = 1·4 ± 0·05 and 
0·9 ± 0·05 g cm- 3). Between these densities measurements were made in duplicate at 
0·1 g cm- 3 intervals. Densities were determined by total weight/total volume measure­
ments. For inert additives, salt and glass beads of - 20 + 28 mesh particle size were 
used in TNT, RDX and 50/50 pentolite; and TNT and RDX, respectively. One must 
select particle sizes carefully if an additive is to behave strictly as an inert. For example, 
one may show that very fine (e.g. ball-milled) salt vaporizes in the detonation wave and 
quenches detonation if used to the extent of more than about 10 % even in the most 
sensitive explosives. On the other hand, if it is too coarse, detonation may propagate 
at or near the velocity of the pure explosive, by propagation between inert grains. It is 
believed that the - 20 + 48 mesh size approximately satisfies the requirements for an 
inert additive at least for the inert substances considered here. The velocity D obtained 
from the smoothed curves of the experimental data are summarized in table I by means 
of the following two empirical formulae. 

D = Dt.o + S(PI - 1·0), 

D = Dp1(1·0) - S'x; PI = PI(1·0) + I(x), 

(2) 

(3) 

where Dt .o, S, Dpl and S' are constants, x = I - Nw = fraction of inert present and 
I(x) is a variable defined in table 1. 

HYDRODYNAMIC EQUp,TIONS 

Using the ·covolume equation of state in conjunction with the hydrodynamic theory 
the ideal detonation velocity is given by 

D* = VI(VI - a*)- 1 (P* + I)p*-t (n*RT2*)t, (4) 

where (5) 

Here the star refers to the pure explosive and the corresponding unstarred equation to 
the explosive + inert mixture. If a pure explosive and one containing an inert additive 
are compared for the same free space, one may take P = p*, especially since the term 
cp. + I)/p*t is very insensitive to variations in P* for the usual range of this variable. 
Comparing (4) for a pure explosive with the corresponding unstarred equation for the 
explosive + inert mixture one thus obtains 

(6) 

where A = 1/(1 - Pl ot) and A· = 1/ (1 - Ptot·). Making use of the covolume equation 
of state (a = a(v» one may express the detonation temperatures for the two cases as 
follows: 

T2* = (Q* - C,,*T1)/(C,/ - n*R/2p-); T2 = (Q - C"Tt)/(C" - lIR/2P). (7) 

Since for a strictly inert mixture, C" = NwC" -, Q = NwQ* and n = Nn- for P = P* 
one may equate T2* to T2 and obtain 

DID- = (A/A*)Nwi . (8) 
Likewise, since 

P2* = PID*(n*RT2)i /P*i, (9) 

one may write 
P2/P2* = p)DNwi lptD*. (10) 

The covolume of the explosive + inert mixture upon which A depends may be taken as 
the sum of the covolumes of the detonation products and the volume of the inert. Thus 

(11) 

where a* applies to the pure explosive and aI(P) = VI(P) is pressure dependent through 
the appropriate compressibilities. The former may be found from a plot of P2 against a* 
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for the pure explosive. Since the covolume of the products of detonation for the pure, 
ideal explosive obeys the same a(v) curve, the covolume a may itself be relatively insensitive 
to composition and temperature. Consequently, the rt.*(P) plot desired for the solution 
of the explosive-inert problem is simply the a*(p*) plot for the pure explosive, and 
rt.E = Nwa*(p) corresponding to the pressure P2 of the mixture, obtained by use of the 
observed ratio PID/ D*Pl* for the explosive + inert system. Typical a*(p) plots are shown 
for TNT in fig. 2. 
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FIG. 2.-Covolume-pressure relationship for TNT. 

The covolume aJ of the inert is simply the volume occupied by the mass of inert at the 
pressure in question and is given by 

(Xl = VJ{p) = V10 exp ( - J: IMp). (12) 

The procedure in solving this problem is as follows. Assume a value of D/ D*, and 
compute p/p* from eqn. (10). One may then compute rt.I and obtain a from this result 
and aE =Nwa*(p), where a*(p) is taken from plots such as those in fig. 2. Then from 
eqn. (8) one may compute D/D· through the definitions of A and A*. If the D/D* ratio 
does not agree with the assumed one, the solution is repeated with the new value, and so 
on until a self-consistent solution is obtained. 

THEORY OF rt.J 

The heat content of a solid may he related to the total expansion tlR/ R as follows : 

J
T JR ~E ~ R - Ro 

H = 0 CdT = Ro ~RdR=RoOR~' (13) 

From the virial theorem, iT = Ro()E/()R, where f is here the average kinetic energy and 
one may thus write (I3) in the form H /2T = (R - Ro)/ Ro for small ~xpansions. From 
this result one obtains for the linear expansion coefficient a' = C/2T, where C is heat 
capacity. _ 

Now for T, following arguments discussed previously,9 one may make use of the semi­
empirical relations 

(14) 

where'" is the work potential, EO' the band width and Ec the cohesive energy. These rela­
tions, while justifiable on a purely empirical basis, were first suggested by the concept 
of the author's .. non-coulombic constraint virial" 10 which appears to permit one to 
attribute bands in solids simply to line broadening by vibrational states. One may easily 
show 11 that £0' = tlTmax, where tlTmax is the kinetic energy fluctuation of a bond due 
to the normal vibrations. This fluctuation in T is shown to be twice the" non-coulombic 
constraint virial" which in turn is equal to the bond energy. The implication is that 
chemical bonding is to be associated exclusively with this" constraint virial ".9-11 The 
linear expansion coefficient of an isotropic solid should then be 

(15) 


